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Separable compact lines

Definition

Consider a closed subset F ⊆ [0, 1], any set X ⊆ F and define
a space

FX = F × {0} ∪ X × {1}

equipped with the topology generated by the lexicographic
order.

Theorem (Ostaszewski, 1974)

The space L is a separable compact linearly ordered space if
and only if L is homeomorphic to FX for some closed set
F ⊆ [0, 1] and a subset X ⊆ F .
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Countable discrete extensions

Definition

Given a compact space K , we say that L is a countable
discrete extension of K if the following are satisfied

1 K is a subspace of L,

2 L is compact,

3 L \ K is a countable infinite discrete space.
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Extension operators

Definition

For two compact spaces K ⊆ L by an extension operator we
mean a bounded linear operator E : C (K ) → C (L) such that
Ef |K = f and for every f ∈ C (K ).

η(K , L)

For a compact space K and L ∈ CDE (K ) we are interested in
the minimal norm of an extension operator E : C (K ) → C (L).
This value is denoted by η(K , L).
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Old results

Theorem (Marciszewski)

There is a separable compact line K of weight ω1 and
L ∈ CDE (K ) such that η(K , L) = 3.

Theorem (K., Plebanek)

If κ ≥ non(E), then there is a separable compact line K of
weight κ and L ∈ CDE (K ) such that η(K , L) = ∞.

E is the σ-ideal generated by closed measure zero sets;
non(E) ≤ non(M), non(N )
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Old results 2

Theorem (K., Plebanek)

For a separable compact line K and L ∈ CDE (K ) we have
η(K , L) = 2k + 1 for some k ∈ ω or η(K , L) = ∞.
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Problem

[2, Problem 7.1.]

Is it relatively consistent that η(K , L) < ∞ for every separable
compact space K of weight ω1 and its countable discrete
extension L?

Here we will focus on the situation where K is a separable
compact line.
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Almost chains

Almost chain of subsets of ω indexed by the set X ⊆ [0, 1] is a
family A such that

A = {Ax ⊆ ω : x ∈ X},
Ax ⊆∗ Ay for x < y .

By almost chains we will always mean almost chains of subsets
of ω (or other countable set) indexed by a set X ⊆ [0, 1]
(which is usually fixed within a context).

Finite adjustment

We say that an almost chain B is a finite adjustment of A if
for all x ∈ X we have Ax =

∗ Bx .
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Alternations in an almost chain

Definition

We say that A is barely alternating if we cannot find
x1 < x2 < x3 < x4 in X and n ∈ ω satisfying

n ∈ Ax1 , n /∈ Ax2 , n ∈ Ax3 , n /∈ Ax4 .

This property means that the almost chain A is alternating at
most once in each n.

When for all n we cannot find any alternations, so there are no
points x < y in X such that n ∈ Ax , n /∈ Ay , then the almost
chain A is just a chain (with the regular inclusion).
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Earlier results

Theorem (Marciszewski, restated)

There is a set X ⊆ [0, 1] of cardinality ω1 and an almost chain
A which cannot be finitely adjusted into a non-alternating
chain.

Problem for separable compact lines, restated

Is it relatively consistent that for every set X ⊆ [0, 1] of
cardinality ω1 and an almost chain A on X there is a finite
adjustment B of A which has finite amount of alternations?
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The straightening forcing

Theorem (Antonio Avilés)

(Under MA(κ)): Assume that we are given

a set X ⊆ [0, 1] of cardinality κ,

an almost chain A = {Ax : x ∈ X} of subsets of ω
indexed by X .

Then there is a barely alternating almost chain {Bx : x ∈ X}
which is a finite adjustment of A, so for all x ∈ X we have
Ax =

∗ Bx .
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The scheme of proof

We use the following forcing:

P = {(F ,B = {Bx ⊆ ω : x ∈ F}) : F ⊆ X ,F is finite,

Ax =
∗ Bx for x ∈ F ,

B is barely alternating},
(F1,B1) ≤ (F2,B2) ⇐⇒ F1 ⊆ F2 ∧ B1 ⊆ B2.

It is then enough to prove the following:

1 P is ccc;

2 MA(κ) =⇒ Thesis.
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Corollary

Under MA(κ), if K is a separable compact line of weight κ,
then for each countable discrete extension L of K there is an
extension operator E : C (K ) → C (L) of norm at most 3.
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